
Introduction 

Successful application of osseointegrated implants is a major devel-
opment in prosthetic dentistry. Hence, clinicians can provide mul-
tiple treatment options, even in cases where functional and esthetic 
rehabilitation is restricted [1]. Such implants have been reported to 
show high success and predictability regardless of the type [2-5]. 
In recent years, the continued development of dental implants has 
led to the global introduction of many types of implant systems 
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[6,7]. Since the 2000s, hundreds of manufacturers have produced 
thousands of types of implant systems, and the number has been 
increasing [8-10]. 

Implants consist of fixtures, abutments, suprastructures, and 
screws, the internal structures and compatible tools of which vary 
according to the manufacturer and system. When mechanical 
complications (e.g., screw loosening or fracture) occur, finding ap-
propriate treatment can be difficult if the implant system cannot be 
correctly identified. Hence, the manufacturer’s proprietary abut-
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ment screws directly affect the successful maintenance of implants 
[11]. Therefore, the accurate identification and classification of im-
plant systems is clinically important. Although periapical radio-
graphs are commonly used to identify implant systems, it is diffi-
cult to accurately identify implants with similar shapes and struc-
tures because of the limitations of radiographs (e.g., distortion, haz-
iness, and noise) [12,13]. Furthermore, without sufficient experi-
ence and knowledge of various implant systems, clinicians have a 
great deal of difficulty identifying them. Thus, there is a need for a 
better method to accurately classify implant systems without rely-
ing on clinician experience and knowledge. 

Artificial intelligence (AI) and deep learning methods have re-
cently led to significant advancements in the medical field. In par-
ticular, convolutional neural networks (CNNs), a key model type 
of artificial neural networks, enable breakthroughs in research and 
analysis, including automated medical image identification and 
classification [14,15]. CNNs extract the features of images via in-
put-data filtering, which is improved through feature enhance-
ment, size reduction, and other alterations. These processes are re-
peated numerous times to obtain satisfactory results. CNNs are ef-
fective at recognizing and classifying patterns in images and can be 
trained without the need for human intervention to recognize spe-
cific patterns [16,17]. 

In previous studies, CNN-based deep learning methods for im-
plant system classification have been investigated [18-20]. Recent 
studies have shown high accuracy in multicenter datasets targeting 
various types of implants [21,22]. However, high-level program-
ming skills and mathematical knowledge are necessary, based on 
the requirements for finely tuned CNN algorithms for specific im-
ages [23,24]. There are also practical limitations in the develop-
ment and use of such programs for clinical applications, even if pre-
viously successful algorithms are used. 

Google Cloud automated machine learning (AutoML) Vision 
(Google LLC, Mountain View, CA, USA) is an open platform 
providing image-based AI model training, evaluation, and predic-
tion using cloud-based computer resources. These systems are 
sufficiently high-end for model training and result evaluation, 
thereby saving enormous time and effort [25]. AutoML Vision al-
lows researchers to train their own AI models without specialized 
expertise or resources. Data collection, preprocessing, optimiza-
tion, and prediction are manually tuned and executed using tradi-
tional deep learning. However, apart from data collection, this 
method is automated with AutoML [26]. Therefore, this study 
aims to evaluate the accuracy and clinical usability of implant sys-
tem classification using CNN-based AutoML on the Google 
Cloud platform. 

Methods 

Ethical statements: This study was approved by the Institu-
tional Review Board (IRB) of Wonkwang University Dental 
Hospital (IRB No: WKDIRB202012-01), which waived the 
need for informed consent owing to the retrospective design 
of the study.

1. Data collection 
Periapical radiographic images were obtained from patients who 
underwent implant treatment at Wonkwang University Dental 
Hospital between January 2005 and December 2019. All images 
had a resolution of 1,440 × 1,920 pixels and were extracted as 
JPEG files using a picture archiving and communication system 
(INFINITT PACS; Infinitt, Seoul, Korea). The images were then 
classified based on electronic medical record systems and dental 
implant inventory records. Four commonly used dental implant 
systems were selected for this study: TSIII and USII (Osstem Im-
plant Co. Ltd., Seoul, Korea), Osseotite External (Biomet 3i LLC, 
West Palm Beach, FL, USA), and Xive S plus (Dentsply Sirona, 
York, PA, USA). Details of the dental implant systems and the 
number of periapical images used are shown in Table 1. Periapical 
images of the lowest part of the fixture on the abutment, crown, or 
attachment were used. Owing to the projection angle and overlap 
of anatomical structures, images of very low quality, in which inter-
nal structures could not be identified with the naked eye, were ex-
cluded. 

2. Preprocessing and model building 
The regions of interest were manually cropped to 400 × 800 pixels 
using an image editing program (PhotoScape; MOOII Tech, 
Seoul, Korea) (Fig. 1). Images of the maxillary implant were 
flipped vertically, and if the fixture was tilted > 45°, the image was 
rotated parallel to the vertical axis. 

AutoML Vision automatically executes Google’s neural archi-
tecture search technology to apply an appropriate algorithm to 
uploaded data [26,27]. AutoML Vision automatically trains 
models based on data provided by the user. During the training 
process, AutoML Vision utilizes machine learning algorithms to 
learn the visual features and patterns of the images and generate 
the optimal model. Subsequently, the performance of the model 
is measured using evaluation metrics, such as accuracy and recall. 
The trained model can be used on various platforms such as mo-
bile apps or web services through the application programming 
interface (API). This can generate prediction results for new im-
ages. 
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To build an implant system classification model, the following 
processes were performed to prepare the images and configure the 
model using the AutoML Vision user interface. (1) A new dataset 
was created as a single-label classification. (2) A total of 4,800 
cropped images were uploaded to the bucket in Google Cloud 
storage and labeled. (3) The images were randomly separated into 
three groups (80% for model learning, 10% for fine-tuning, and 
10% for performance evaluation). (4) A model was trained for 32 
node hours. Google Cloud’s n1-standard-8 machine with NVIDIA 
Tesla V100 was used. 

3. Metrics for accuracy comparison 
AutoML Vision provides the area under the precision-recall curve 
as a metric for evaluating model performance (i.e., average preci-
sion). The closer the value is to 1.0, the more accurate the model is. 
For comparison with other deep learning methods, the accuracy, 
precision, recall, specificity, and F1 scores were calculated using the 
following equations: accuracy = TP+TN/TP+FP+FN+TN; pre-

cision = TP/TP+FP; recall = TP/TP+FN; specificity = TN/
TN+FP; F1 score = 2 × (recall+precision)/recall +precision; 
where TP is true positive, TN is true negative, FP is false positive, 
and FN is false negative. 

Results 

1. Model evaluation 
Google AutoML Vision performance was measured at confidence 
threshold levels from 0.0 to 1.0. The precision-recall curve for the 
model is shown in Fig. 2. The average precision score was 0.983. 
When the confidence threshold was 0.5, precision and recall were 
0.963 and 0.961, respectively. The image classification perfor-
mance of each implant system tested in this study is presented in 
Table 2. 

The confusion matrix shows how often the model classified 
each label correctly, and the labels that were most often confused 
with that label (Fig. 3). Examples of the FNs and FPs for each im-

Table 1. Dental implant systems and the number of images used for model learning 

Variable
Dental implant system

TSIII USII Osseotite External Xive S plus
Manufacturer Osstem Implant Co. Ltd. Osstem Implant Co. Ltd. Biomet 3i LLC Dentsply Sirona
Connection type Internal hexagon External hexagon External hexagon Internal hexagon
Diameter (mm) 3.0–7.0 3.5–5.0 3.25–6.0 3.0–5.5
Length (mm) 7.0–13.0 7.0–13.0 8.5–15.0 8.0–15.0
Total images 1,200 1,200 1,200 1,200
 Train images 958 960 958 960
 Validation images 119 120 119 120
 Test images 123 120 123 120

Fig. 1. Periapical radiographs and cropped images of the four types of selected implants. TSIII and USII: Osstem Implant Co. Ltd., 
Seoul, Korea; Osseotite External: Biomet 3i LLC, West Palm Beach, FL, USA; Xive S plus: Dentsply Sirona, York, PA, USA.

TSIII

Raw image

Region of interest

USII Osseotite External Xive S plus
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plant system are shown in Fig. 4. Osstem TSIII had an accuracy of 
100%, and there were no FNs or FPs.  

2. Model cost  
The monetary charges for AutoML Vision consisted of model 
learning and deployment costs. The charge rate for learning the im-
age classification model was $3.15 per node hour. Each node corre-
sponded to the n1-standard-8 machine. The charge rate for model 
deployment online was $1.25 per node hour. Table 3 shows Google’s 
current charge rates and the total cost of the present research model. 

Discussion 

This study evaluated how accurately dental implant systems could 
be classified using the AutoML model available on the Google 

Cloud platform. The results showed that the CNN-based AutoML 
model classified the implant systems with a high level of accuracy. 
These results suggest that the AI model may be effective for diag-
nosis and classification in other fields of dentistry. 

Using AutoML Vision, researchers can build models using Goo-
gle’s latest machine learning technology and deploy them on mo-
bile applications and websites. Important advantages of AutoML 
are its simplicity and ease of use. As an AutoML platform, users 
only need to collect and label images for analysis. Therefore, deep 
learning can be easily executed without high-specification equip-
ment or expertise in AI programming. In a previous study, high ac-
curacy was reported when an automated deep learning software 
was used for 27 types of implants [28]. However, deep learning 
software has the disadvantages of being expensive, being difficult 
to share and use by multiple people, and requiring high-perfor-

Fig. 2. Precision and recall curves on confidence threshold. (A) Precision-recall curve. It shows the trade-off between precision 
and recall. (B) Precision-recall by confidence threshold. It shows how model performs on the top-scored label along the full range 
of confidence threshold values. 

Table 2. Model performance of implant system classification

Variable
Dental implant system

Overall
TSIII USII Osseotite External Xive S plus

Accuracy 1.000 0.969 0.965 0.988 0.981
Precision 1.000 0.957 0.927 0.967 0.963
Recall 1.000 0.925 0.935 0.983 0.961
Specificity 1.000 0.976 0.975 0.989 0.985
F1 score 1.000 0.941 0.931 0.975 0.962

TSIII and USII: Osstem Implant Co. Ltd., Seoul, Korea; Osseotite External: Biomet 3i LLC, West Palm Beach, FL, USA; Xive S plus: Dentsply Sirona, York, PA, 
USA.
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Fig. 3. Confusion matrix for multiclass classification using 
Google AutoML Vision user interface. TSIII and USII: Osstem 
Implant Co. Ltd., Seoul, Korea; Osseotite External: Biomet 3i 
LLC, West Palm Beach, FL, USA; Xive S plus: Dentsply Sirona, 
York, PA, USA; Google AutoML Vision: Google LLC, Mountain 
View, CA, USA.

Fig. 4. Examples of false negatives and false positives. USII: Osstem Implant Co. Ltd., Seoul, Korea; Osseotite External: Biomet 3i 
LLC, West Palm Beach, FL, USA; Xive S plus: Dentsply Sirona, York, PA, USA.

mance computers. 
Cloud computing is an online environment where information 

technology-related functions such as data storage, networking, and 
applications can be accessed from the Internet. Cloud computing 
offers the advantage of accessing high-performance computing re-

sources and storage facilities to provide flexibility and scalability. 
Using cloud computing, individuals and businesses can reduce the 
costs of maintaining computer systems, installing servers, and pur-
chasing software, leading to increased productivity [29]. However, 
there are ethical issues associated with uploading medical informa-
tion to the cloud. Medical information stored in the cloud carries 
the risk of hacking or data leakage. There is also the risk of unau-
thorized access by cloud providers, network administrators, and 
other users. In this study, patient information was completely re-
moved while cropping the periapical radiographs, and only the im-
plant images were uploaded to the cloud system. However, addi-
tional discussions and consensus regarding cloud systems and 
medical information are required. 

This study used Google Cloud, a leading global cloud service. A 
unique advantage of implant identification using a cloud-based sys-
tem is that collaboration with various implant users is possible. Be-
cause of their nature, a wide variety of implants are used world-
wide. Therefore, this collaboration will help develop a clinically us-
able implant identification model. Additionally, it is possible to de-
velop software or applications using the APIs provided by the 
cloud. Finally, when a clinician encounters an implant that must be 
identified, the implant can be tested by accessing the cloud system 
and uploading an image. This is also cost-effective [30]. 

The accuracy (0.981) and F1 scores (0.962) in this study using 
AutoML were high, similar to those in the studies by Kim et al. 
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[18] and Lee and Jeong [31] using various pretrained networks 
(SqueezeNet, GoogLeNet, ResNet-18, mobileNetV2, ResNet-50, 
and Inception v3). These results confirm that cloud-based Au-
toML and fine-tuned CNN algorithms are effective in classifying 
dental implant systems. 

In the present study, Osstem TSIII exhibited a very high level of 
accuracy owing to its internal connection and cutting-edge design. 
Dentsply Sirona Xive also uses an internal connection but has a 
platform-matched design, which differs from that of Osstem TSIII 
and is more similar to an external type [32,33]. Osstem USII and 
3i Osseotite External were most often confused in the confusion 
matrix. This was because they had the same external connection 
type, and their cutting-edge design was similar with respect to the 
periapical image. Nevertheless, Osstem USII and 3i Osseotite Ex-
ternal showed accuracies of 0.969 and 0.965, respectively, indicat-
ing that the CNN algorithm-based AutoML model can classify im-
plants with similar designs. 

The analysis of FNs and FPs revealed that if the horizontal pro-
jection angle of the image was large for maxillary implants, the in-
ternal structure was relatively unclear. Hence, the accuracy was re-
duced. Additionally, in the FN examples of Dentsply Sirona Xive, 
the image recognition performance was significantly affected if the 
density and contrast were inappropriate or if the prosthetic parts of 
the adjacent teeth overlapped. In addition, after analyzing the FN 
examples of 3i Osseotite and FP examples of Dentsply Sirona Xive, 
although clearly identified visually, the algorithm gave a very low or 
very high score, resulting in incorrect conclusions. The quantified 
analysis provided by AutoML Vision for the failed analyses will be 
helpful for fine-tuning the algorithm for implant identification. 

This study has several limitations that should be considered. 
First, good-quality periapical radiographic images were selected by 
the prosthodontist and included in the datasets. The use of real 
clinical images that are not standardized could potentially reduce 
the accuracy of the model. Second, the types of implants used in 
this study were limited; in particular, internal and external implants 
were easy to distinguish, which may have negatively affected confi-
dence in the accuracy of the study. Furthermore, the present study 
used AutoML. Thus, there was a lack of detailed information on 
exactly which algorithms Google utilized on the cloud platform. 

Further studies are needed to collect images of implant systems 
produced at multiple institutions and dental hospitals. High diver-
sity and quality of the dataset will improve the accuracy and uni-
versality of the model. In addition, the model should classify diam-
eters and lengths as well as implant systems because the compati-
bility of connections varies depending on the size [34]. The devel-
opment of deep learning algorithms that can accurately classify the 
diameter and length of implants may increase their clinical applica-
bility. 

We found that deep learning-based AutoML on a cloud plat-
form is useful for the classification of dental implant systems with 
high accuracy. This was achieved through collaboration based on 
an online cloud system. Higher-quality implant images from vari-
ous institutions and dental hospitals are required to improve the 
performance and clinical usability of this model. 
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